

Date Planned : / /	Daily Tutorial Sheet - 10	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level - 2	Exact Duration :

*186.	The number of ways in which 5 different prizes can be distributed amongst 4 persons if each is entitled to
	receive at most 4 prizes is:

(A) 1020 **(B)** 620

 $5^4 - 5$ (C)

 $4^{5} - 4$ (D)

*187. A letter lock consists of 3 rings marked with 15 different letters. If N denotes the number of ways in which it is possible to make unsuccessful attempts to open the lock, then:

(A) 482 divides N (B) N is product of 3 distinct prime numbers

(C) N is product of 4 distinct prime numbers (D) N is product of 2 distinct prime numbers

*188. The number of zeroes at end of |70 is equal to:

> The number of 6-digit numbers formed using all the digits 1, 2, 3, 4, 5, 6 divided by ${}^{10}C_{2}$ (A)

(B) The number of 6- digit numbers formed using all the digits 1, 2, 3, 4, 5, 6 divided by 10.

Twice the number of 4-digit numbers formed using 4 of the digits 1, 2, 3, 4, 5, 6 divided by ${}^{10}C_{2}$ (C)

(D) The number of 4- digit numbers formed using 4 of the digits 1, 2, 3, 4, 5, 6 divided by 5

189. There are three papers of 100 marks each in an examination. Then the no. of ways can a student get 150 marks such that he gets atleast 60% in two papers:

 $^{3}C_{2} \times ^{32}C_{2}$ (A)

(B)

 ${}^{4}C_{3} \times {}^{32}C_{2}$ (C) ${}^{4}C_{3} \times {}^{36}C_{2}$ (D) ${}^{4}C_{3} \times {}^{36}C_{3}$

X is a set containing n elements. A subset P_1 is chosen at random and then set X is reconstructed by *190. replacing the elements of set P1. A subset P2 of X is now chosen at random and again set X is reconstructed by replacing the elements of P2. This process is continued to choose subsets P3, P4, P5....

 P_m where $m \ge 2$, then the number of ways to select sets such that: (i) $P_i \cap P_j = \emptyset$ for $i \ne j$ and $i, j = 1, 2 \dots m$. (ii) $P_1 \cap P_2 \cap P_3 \dots \cap P_m = \emptyset$

10 different toys are to be distributed among 10 children. Total number of ways of distributing these toys so that exactly 2 children do not get any toy, is equal to:

 $(10!)^2 \left(\frac{1}{3! \ 2! \ 7!} + \frac{1}{(2!)^5 \ 6!} \right)$ (A)

(B) $(10!)^2 \left(\frac{1}{3! \ 2! \ 7!} + \frac{1}{(2!)^4 \ 6!} \right)$

 $(10!)^2 \left(\frac{1}{3! \, 7!} + \frac{1}{(2!)^5 \, 6!} \right)$ (C)

(D) $(10!)^2 \left(\frac{1}{3! \, 7!} + \frac{1}{(2!)^4 \, 6!} \right)$

192. Identify following statements for True (T) and False (F):

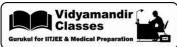
> S₁: An old man while dialing a 7-digit telephone number remembers that the first four digits consist of one 1's, one 2's and two 3's. He also remembers that the fifth digit is either a 4 or 5 while has no memory of the sixth digit, he remembers that the seventh digit is 9 minus the sixth digit. Maximum number of distinct trials he has to try to make sure that he dials the correct telephone number, is 240.

> S2: A woman has 11 close friends. The number of ways in which she can invite 5 of them to dinner, if two of them are not on speaking terms and will not attend together is 378.

> S3: 10 IIT and 2 PET students sit in a row. If the total number of ways in which exactly 3 IIT students sit between 2 PET students is $\lambda \times 10!$, then λ is 6.

Which of the following choice is correct?

(A) TTT **(B)** TTF (C) **TFF** **(D)** FTF



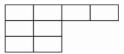
	or IITJEE & Me	dical Preparation									
193.	There	There are 10 stations on a circular path. A train has to stop at 4 stations such that no two stations are									
	adjacent. The number of such selections must be:								\odot		
	(A)	25	(B)	35	(C)	210	(D)	50			
194.	Number of ways of arranging 12 boys and 12 girls are as follows:								\odot		
	a_1 = a line such that boys and girls sit alternatively.										
	<i>a</i> ₂ =	a_2 = around a circular table alternatively.									
	a ₃ =	a_3 = around an equilateral triangular table alternatively and eight on each side.									
	<i>a</i> ₄ =	a_4 = around a square table alternatively and six on each side.									
	(For	(For a_3 and a_4 on a corner if on one side, it's a boy then on the other side it should be a girl to maintain									

alternation). Which of the following is true? $a_1 > a_2 > a_3 > a_4$

(B) $a_4 > a_3 > a_2 > a_1$

(C) $a_1 > a_3 > a_4 > a_2$ $a_1 > a_4 > a_3 > a_2$

195. The number of different ways the letters of the word VECTOR can be placed in 8 boxes given below such that no row empty is equal to:



(A) 26 **(B)** $26 \times 6!$ (C) 6! **(D)** $2! \times 6!$

*196. A man has to move 9 steps. He can move in 4 directions: left, right, forward, backward. In how many ways he can move 9 steps such that he finishes his journey one step away (either left or right or forward or backward) from the starting position?

(B) $4 \times \left({}^9C_4\right)^2$ **(C)** $\left({}^9C_4\right)^2$ **(D)** $4 \times \left({}^{10}C_5\right)^2$

197. How many integral solutions are there to the system of equations $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ and $x_1 + x_2 + x_3 + x_4 + x_5 = 20$

+ $x_3 = 5$ when $x_k \ge 0$?

334 (A)

336 (B)

(C) 332 **(D)** 338

198. Three girls and nine boys need to be seated in two vans, each having numbered seats, 3 in the front and 4 at the back. How many seating arrangements are possible if 3 girls should sit together in a back row on adjacent seats?

(A) 12! **(B)**

 $2 \times 12!$

(C) $2 \times 10!$ **(D)** $2 \times 9!$

If n_1 and n_2 are five-digit numbers, the total number of ways of forming n_1 and n_2 so that these 199. numbers can be added without carrying at any stage is:

 $45(55)^4$ (A)

(B) $38(55)^4$

(C) $36(55)^4$

 $40(55)^4$ **(D**)

200. Number of sub parts into which 'n' straight lines in a plane can divide it is:

 $\frac{n^2+n+2}{2}$ (B) $\frac{n^2+n+4}{2}$ (C) $\frac{n^2+n+6}{2}$

(D) None of these